Categories: GeekMomScience

Nuclear Meteorology – A Primer

Fukushima Daiichi Nuclear Plant on 15 March 2011, before Reactor #2 exploded. Photo by Flickr user daveeza.

Wow — how did the GeekMoms get their hands on a trained nuclear meteorologist?

I don’t really talk much about it because ordinarily peoples’ eyes tend to glaze over.  I mean, who wants to hear about such stuff?

Right now, everyone wants to hear about it!  With the recent events in Japan, everyone is tuning in to the experts to hear their forecasts on where the radiation is going to go!   The Japanese are particularly interested, as are those in Alaska and the west coast of North America!

Note: I am NOT issuing my own forecast on this blog.  While I have had the training, I am NOT currently in the work force and therefore do not have the resources to make my own forecast.  What I will do here is discuss the fundamentals of nuclear meteorology and the tools the authorities in the U.S. and Japan are using to make the forecasts.  I will be happy to point you to some of the sources that the media is pointing to, and you other geeky Moms are smart folks: you will enjoy knowing where CNN and Fox News are getting their radioactivity forecasts!

First of all, if you’d like some introduction to how a nuclear power plant works, you can check here and here.  If you’d like to learn more about why the earthquake and tsunami caused so many problems for this plant, you can read about it here.

Perhaps you’re seeing the media speculating on all these wind forecasts.  This is an example of what we’re seeing…

A HYSPLIT transport and dispersion model output graphic. You’re looking at forecast locations and elevations of hypothetical “parcels” of air originating at Fukushima on 19 March 2011 at 1800 UTC. The red line is a parcel originating at 10m height, the blue line is originating at 300m height. The map shows the latitudes/longitudes of the parcels as they travels across the Pacific, the bottom graph shows the elevation of the parcel over time. Please understand that authorites do NOT know how much pollutant is emerging from Fukushima right now, so these estimates are for planning purposes only. Picture from NOAA/ARL.

Yes, you’re seeing a plume end up on the west coast of California.  It’s quite possible for this to happen.  But before we head for the door with our “go bags”, let’s discuss the variables in an atmospheric transport and dispersion forecast.

  • The source term.  This is the “stuff” being emitted that we’re concerned with in our atmosphere.  A pollutant…or in Fukushima’s case, the assorted pieces of the nuclear plant, from pieces of the fuel rods to pieces of the buildings that were involved in the explosion, but even pieces of the buildings will be irradiated.  Different “sources” will behave in different ways — heavier materials (such as Uranium-235) will behave differently than lighter materials (such as Iodine-131).
  • The temperature of the source term.  Depending on the amounts of the material launched into the atmosphere, sometimes the material is so hot, it causes its own “microclimate”.  This blogger shows a picture of a nuclear test mushroom cloud producing its own tornado!
  • Source location and height. Is the pollutant coming from a smokestack?  A small chimney?  A reactor explosion?  That will impact the starting height of the pollutant release, as well as the size of the release: from a pinpoint origin, or from a more broad origin.
  • The surrounding terrain near the release site.  A nuclear power plant in the mountains will launch pollutants differently than one on the coastline.
  • Obstructions to the release in the vicinity. This type of issue was important when military members were attempting to document where the pollutants would flow after the Twin Towers fell in 2001.  The other skyscrapers in the area had a significant impact on the accuracy of the forecast.

These variables all impact the accuracy of the forecast.  Throw in the meteorological variables and the general accuracy of the weather model, and you can now understand why all the different media outlets currently have different answers about much of this.  There’s a LOT to take into account.

And one more thing, so far there’s been NO absolute data on how much radiation is coming from Fukushima.

Related Post

There are many “transport and dispersion” models out there that the authorities are tapping into:

  • NARAC: Lawrence Livermore Lab’s National Atmospheric Release Advisory Center has its own in-house model.  The agency has been activated to assist the Nuclear Regulatory Commission with possible radiation coming into the United States.
  • HYSPLIT: National Oceanic and Atmospheric Administration’s Hybrid Single Particle Lagrangian Integrated Trajectory Model.  Anyone in the atmospheric sciences fields can run this model straight from the web (so long as you register)!
  • HPAC: Hazard Prediction and Assessment Capability.  This is the Department of Defense’s transport and dispersion model of choice.

It’s also important to point out that some radioactive material loses its radioactive traits over time.  You might remember the term “half life” from high school chemistry?  For example, Iodine-131, one of the radioactive materials suspected to be coming from Fukushima (and causes damage to the thyroid), has a half life of 8 days.  This means, 1/2 of the atoms in a set release period are expected to be GONE in 8 days.  Returning to the map above, if there is Iodine-131 in the material traveling across the Pacific Ocean, and it’s expected to reach the west coast of the U.S. in 5 days, you can expect about 30% of the material to have decayed.

Earlier this week the NY Times published a primer on the half-lifes of some of the materials that could come from the Fukushima accident.

Remember, a forecast is only as accurate as the initial conditions that go into it.  As they used to say in my first computer programming classes in college: GIGO.  Garbage in, Garbage out.

I wish this could be a happier post, all I can offer is to keep aware and listen to your local authorities.  They’re working with some of the brightest out there to take care of us!

Liked it? Take a second to support GeekMom and GeekDad on Patreon!

Patricia Vollmer

Patricia Vollmer is the proud mother of two sons, ages 16 & 18, who are as geeky as she is. She's been writing for the Geek Family Network since 2011. She is a meteorologist who works for the U.S. Air Force in Colorado Springs, Colorado. Hobbies include running, despite no one chasing her, sharing her love for Disney, Marvel, and Star Wars, and exploring the world with her boys. Ask her why the sky is blue at your own risk.

Share
Published by
Tags: Meteorology

Recent Posts

Skye Sweetnam, Sumo Cyco, and the Power of Community

Like many others, I jumped directly into my Apple Music Replay this year filled with…

December 17, 2025

GeekDad/GeekMom Holiday Gift Guide 2025: Stocking Stuffers

It's time to stuff the stockings that were hung with care with our must-have stocking…

December 15, 2025

GeekDad/GeekMom Holiday Gift Guide 2025: Clothing and Everyday Essentials

It's time to get styling and stocking up on everyday necessities that we think you…

December 10, 2025

GeekDad/GeekMom Holiday Gift Guide 2025: Gadgets

Every geek loves a new gadget. Here’s a selection from the GeekDad and GeekMom writers,…

December 9, 2025

Get Started Resin Printing With the HALOT-X1

If you enjoy 3D printing with filament and are interested in something new, resin printing…

December 1, 2025

Catch The xTool M1 Ultra Multi-Tasking Laser on Black Friday Sale

After spending some time with xTool's M1 Ultra, the other tools in my maker arsenal…

November 26, 2025